Radiologist Preferences for Artificial Intelligence-Based Decision Support During Screening Mammography Interpretation.
J Am Coll Radiol
; 19(10): 1098-1110, 2022 10.
Article
en En
| MEDLINE
| ID: mdl-35970474
BACKGROUND: Artificial intelligence (AI) may improve cancer detection and risk prediction during mammography screening, but radiologists' preferences regarding its characteristics and implementation are unknown. PURPOSE: To quantify how different attributes of AI-based cancer detection and risk prediction tools affect radiologists' intentions to use AI during screening mammography interpretation. MATERIALS AND METHODS: Through qualitative interviews with radiologists, we identified five primary attributes for AI-based breast cancer detection and four for breast cancer risk prediction. We developed a discrete choice experiment based on these attributes and invited 150 US-based radiologists to participate. Each respondent made eight choices for each tool between three alternatives: two hypothetical AI-based tools versus screening without AI. We analyzed samplewide preferences using random parameters logit models and identified subgroups with latent class models. RESULTS: Respondents (n = 66; 44% response rate) were from six diverse practice settings across eight states. Radiologists were more interested in AI for cancer detection when sensitivity and specificity were balanced (94% sensitivity with <25% of examinations marked) and AI markup appeared at the end of the hanging protocol after radiologists complete their independent review. For AI-based risk prediction, radiologists preferred AI models using both mammography images and clinical data. Overall, 46% to 60% intended to adopt any of the AI tools presented in the study; 26% to 33% approached AI enthusiastically but were deterred if the features did not align with their preferences. CONCLUSION: Although most radiologists want to use AI-based decision support, short-term uptake may be maximized by implementing tools that meet the preferences of dissuadable users.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Neoplasias de la Mama
/
Mamografía
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
/
Qualitative_research
/
Screening_studies
Límite:
Female
/
Humans
Idioma:
En
Revista:
J Am Coll Radiol
Asunto de la revista:
RADIOLOGIA
Año:
2022
Tipo del documento:
Article