Your browser doesn't support javascript.
loading
Thyroid Disease Prediction Using Selective Features and Machine Learning Techniques.
Chaganti, Rajasekhar; Rustam, Furqan; De La Torre Díez, Isabel; Mazón, Juan Luis Vidal; Rodríguez, Carmen Lili; Ashraf, Imran.
Afiliación
  • Chaganti R; Toyota Research Institute, Los Altos, CA 94022, USA.
  • Rustam F; Department of Software Engineering, School of System Sciences, University of Management and Technology, Lahore 54770, Pakistan.
  • De La Torre Díez I; Department of Signal Theory and Communications and Telematic Engineering, University of Valladolid, Paseo de Belén 15, 47011 Valladolid, Spain.
  • Mazón JLV; Higher Polytechnic School, Universidad Europea del Atlántico, Parque Científico y Tecnológico de Cantabria, Isabel Torres 21, 39011 Santander, Spain.
  • Rodríguez CL; Project Department, Universidade Internacional do Cuanza, Cuito EN250, Bié, Angola.
  • Ashraf I; Department of Project Management, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA.
Cancers (Basel) ; 14(16)2022 Aug 13.
Article en En | MEDLINE | ID: mdl-36010907
Thyroid disease prediction has emerged as an important task recently. Despite existing approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized and results are not validated either. Predominantly, existing approaches focus on model optimization and the feature engineering part is less investigated. To overcome these limitations, this study presents an approach that investigates feature engineering for machine learning and deep learning models. Forward feature selection, backward feature elimination, bidirectional feature elimination, and machine learning-based feature selection using extra tree classifiers are adopted. The proposed approach can predict Hashimoto's thyroiditis (primary hypothyroid), binding protein (increased binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome (NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-based selected feature yields the best results with 0.99 accuracy and an F1 score when used with the random forest classifier. Results suggest that the machine learning models are a better choice for thyroid disease detection regarding the provided accuracy and the computational complexity. K-fold cross-validation and performance comparison with existing studies corroborate the superior performance of the proposed approach.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos