Your browser doesn't support javascript.
loading
Quantifying mechanical and metabolic interdependence between speed and propulsive force during walking.
Pimentel, Richard E; Feldman, Jordan N; Lewek, Michael D; Franz, Jason R.
Afiliación
  • Pimentel RE; Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  • Feldman JN; Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  • Lewek MD; Applied Biomechanics Laboratory, Joint Department of BME, UNC, and NCSU, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
  • Franz JR; Human Movement Science Laboratory, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
Front Sports Act Living ; 4: 942498, 2022.
Article en En | MEDLINE | ID: mdl-36157906
Walking speed is a useful surrogate for health status across the population. Walking speed appears to be governed in part by interlimb coordination between propulsive (FP) and braking (FB) forces generated during step-to-step transitions and is simultaneously optimized to minimize metabolic cost. Of those forces, FP generated during push-off has received significantly more attention as a contributor to walking performance. Our goal was to first establish empirical relations between FP and walking speed and then to quantify their effects on metabolic cost in young adults. To specifically address any link between FP and walking speed, we used a self-paced treadmill controller and real-time biofeedback to independently prescribe walking speed or FP across a range of condition intensities. Walking with larger and smaller FP led to instinctively faster and slower walking speeds, respectively, with ~80% of variance in walking speed explained by FP. We also found that comparable changes in either FP or walking speed elicited predictable and relatively uniform changes in metabolic cost, together explaining ~53% of the variance in net metabolic power and ~14% of the variance in cost of transport. These results provide empirical data in support of an interdependent relation between FP and walking speed, building confidence that interventions designed to increase FP will translate to improved walking speed. Repeating this protocol in other populations may identify other relations that could inform the time course of gait decline due to age and disease.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Front Sports Act Living Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Front Sports Act Living Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos