Your browser doesn't support javascript.
loading
Genomic Signatures of Freshwater Adaptation in Pacific Herring (Clupea pallasii).
Nedoluzhko, Artem; Orlova, Svetlana Yu; Kurnosov, Denis S; Orlov, Alexei M; Galindo-Villegas, Jorge; Rastorguev, Sergey M.
Afiliación
  • Nedoluzhko A; Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia.
  • Orlova SY; Limited Liability Company ELGENE, 109029 Moscow, Russia.
  • Kurnosov DS; Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia.
  • Orlov AM; Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia.
  • Galindo-Villegas J; Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia.
  • Rastorguev SM; Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia.
Genes (Basel) ; 13(10)2022 10 14.
Article en En | MEDLINE | ID: mdl-36292743
ABSTRACT
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as "genomic islands of divergence". Moreover, the Tajima's D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait-osmoregulation.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Adaptación Fisiológica / Lagos Límite: Animals Idioma: En Revista: Genes (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Adaptación Fisiológica / Lagos Límite: Animals Idioma: En Revista: Genes (Basel) Año: 2022 Tipo del documento: Article País de afiliación: Rusia