Your browser doesn't support javascript.
loading
Cumulative polarization in conductive interfacial ferroelectrics.
Deb, Swarup; Cao, Wei; Raab, Noam; Watanabe, Kenji; Taniguchi, Takashi; Goldstein, Moshe; Kronik, Leeor; Urbakh, Michael; Hod, Oded; Ben Shalom, Moshe.
Afiliación
  • Deb S; School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Cao W; Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
  • Raab N; School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Watanabe K; Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan.
  • Taniguchi T; International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.
  • Goldstein M; School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel.
  • Kronik L; Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, Israel.
  • Urbakh M; Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
  • Hod O; Department of Physical Chemistry, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences and The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel.
  • Ben Shalom M; School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel. moshebs@tauex.tau.ac.il.
Nature ; 612(7940): 465-469, 2022 12.
Article en En | MEDLINE | ID: mdl-36352233
Ferroelectricity in atomically thin bilayer structures has been recently predicted1 and measured2-4 in two-dimensional materials with hexagonal non-centrosymmetric unit-cells. The crystal symmetry translates lateral shifts between parallel two-dimensional layers to sign changes in their out-of-plane electric polarization, a mechanism termed 'slide-tronics'4. These observations have been restricted to switching between only two polarization states under low charge carrier densities5-12, limiting the practical application of the revealed phenomena13. To overcome these issues, one should explore the nature of polarization in multi-layered van der Waals stacks, how it is governed by intra- and interlayer charge redistribution and to what extent it survives the addition of mobile charge carriers14. To explore these questions, we conduct surface potential measurements of parallel WSe2 and MoS2 multi-layers with aligned and anti-aligned configurations of the polar interfaces. We find evenly spaced, nearly decoupled potential steps, indicating highly confined interfacial electric fields that provide a means to design multi-state 'ladder-ferroelectrics'. Furthermore, we find that the internal polarization remains notable on electrostatic doping of mobile charge carrier densities as high as 1013 cm-2, with substantial in-plane conductivity. Using density functional theory calculations, we trace the extra charge redistribution in real and momentum spaces and identify an eventual doping-induced depolarization mechanism.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Israel

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Israel