Your browser doesn't support javascript.
loading
Highly Reproducible Heterosynaptic Plasticity Enabled by MoS2/ZrO2-x Heterostructure Memtransistor.
Jang, Hye Yeon; Kwon, Ojun; Nam, Jae Hyeon; Kwon, Jung-Dae; Kim, Yonghun; Park, Woojin; Cho, Byungjin.
Afiliación
  • Jang HY; Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
  • Kwon O; Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
  • Nam JH; Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
  • Kwon JD; Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
  • Kim Y; Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
  • Park W; Department of Urban, Energy, and Environmental Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk 28644, Republic of Korea.
  • Cho B; Department of Energy and Electronic Materials, Surface Materials Division, Korea Institute of Materials Science, 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea.
ACS Appl Mater Interfaces ; 14(46): 52173-52181, 2022 Nov 23.
Article en En | MEDLINE | ID: mdl-36368778
Electrically tunable resistive switching of a polycrystalline MoS2-based memtransistor has attracted a great deal of attention as an essential synaptic component of neuromorphic circuitry because its switching characteristics from the field-induced migration of sulfur defects in the MoS2 grain boundaries can realize multilevel conductance tunability and heterosynaptic functionality. However, reproducible switching properties in the memtransistor are usually disturbed by the considerable difficulty in controlling the concentration and distribution of the intrinsically existing sulfur defects. Herein, we demonstrate reliable heterosynaptic characteristics using a memtransistor device with a MoS2/ZrO2-x heterostructure. Compared to the control device with the MoS2 semiconducting channel, the Schottky barrier height was more effectively modulated by the insertion of the insulating ZrO2-x layer below the MoS2, confirmed by an ultraviolet photoelectron spectroscopy analysis and the corresponding energy-band structures. The MoS2/ZrO2-x memtransistor accomplishes dual-terminal (drain and gate electrode) stimulated multilevel conductance owing to the tunable resistive switching behavior under varying gate voltages. Furthermore, the memtransistor exhibits long-term potentiation/depression endurance cycling over 7000 pulses and stable pulse cycling behavior by the pulse stimulus from different terminal regions. The promising candidate as an essential synaptic component of the MoS2/ZrO2-x memtransistors for neuromorphic systems results from the high recognition accuracy (∼92%) of the deep neural network simulation test, based on the training and inference of handwritten numbers (0-9). The simple memtransistor structure facilitates the implementation of complex neural circuitry.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article