Your browser doesn't support javascript.
loading
Integrated femtosecond pulse generator on thin-film lithium niobate.
Yu, Mengjie; Barton Iii, David; Cheng, Rebecca; Reimer, Christian; Kharel, Prashanta; He, Lingyan; Shao, Linbo; Zhu, Di; Hu, Yaowen; Grant, Hannah R; Johansson, Leif; Okawachi, Yoshitomo; Gaeta, Alexander L; Zhang, Mian; Loncar, Marko.
Afiliación
  • Yu M; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Barton Iii D; Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA.
  • Cheng R; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Reimer C; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Kharel P; HyperLight, Cambridge, MA, USA.
  • He L; HyperLight, Cambridge, MA, USA.
  • Shao L; HyperLight, Cambridge, MA, USA.
  • Zhu D; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Hu Y; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Grant HR; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Johansson L; Department of Physics, Harvard University, Cambridge, MA, USA.
  • Okawachi Y; Freedom Photonics, Goleta, CA, USA.
  • Gaeta AL; Freedom Photonics, Goleta, CA, USA.
  • Zhang M; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
  • Loncar M; Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
Nature ; 612(7939): 252-258, 2022 12.
Article en En | MEDLINE | ID: mdl-36385531
ABSTRACT
Integrated femtosecond pulse and frequency comb sources are critical components for a wide range of applications, including optical atomic clocks1, microwave photonics2, spectroscopy3, optical wave synthesis4, frequency conversion5, communications6, lidar7, optical computing8 and astronomy9. The leading approaches for on-chip pulse generation rely on mode-locking inside microresonators with either third-order nonlinearity10 or with semiconductor gain11,12. These approaches, however, are limited in noise performance, wavelength and repetition rate tunability 10,13. Alternatively, subpicosecond pulses can be synthesized without mode-locking, by modulating a continuous-wave single-frequency laser using electro-optic modulators1,14-17. Here we demonstrate a chip-scale femtosecond pulse source implemented on an integrated lithium niobate photonic platform18, using cascaded low-loss electro-optic amplitude and phase modulators and chirped Bragg grating, forming a time-lens system19. The device is driven by a continuous-wave distributed feedback laser chip and controlled by a single continuous-wave microwave source without the need for any stabilization or locking. We measure femtosecond pulse trains (520-femtosecond duration) with a 30-gigahertz repetition rate, flat-top optical spectra with a 10-decibel optical bandwidth of 12.6 nanometres, individual comb-line powers above 0.1 milliwatts, and pulse energies of 0.54 picojoules. Our results represent a tunable, robust and low-cost integrated pulsed light source with continuous-wave-to-pulse conversion efficiencies an order of magnitude higher than those achieved with previous integrated sources. Our pulse generator may find applications in fields such as ultrafast optical measurement19,20 or networks of distributed quantum computers21,22.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Óxidos / Semiconductores Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Óxidos / Semiconductores Idioma: En Revista: Nature Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos