Your browser doesn't support javascript.
loading
Air-Stable Radical Organic Cages as Cascade Nanozymes for Enhanced Catalysis.
Yang, Xiao-Dong; Zhang, Ya-Jun; Zhou, Jun-Hao; Liu, Ling; Sun, Jian-Ke.
Afiliación
  • Yang XD; MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Zhang YJ; MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Zhou JH; College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China.
  • Liu L; MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Sun JK; MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
Small ; 19(5): e2206127, 2023 Feb.
Article en En | MEDLINE | ID: mdl-36440672
ABSTRACT
The pursuit of single-assembled molecular cage reactors for complex tandem reactions is a long-standing target in biomimetic catalysis but still a grand challenge. Herein, nanozyme-like organic cages are reported by engineering air-stable radicals into the skeleton upon photoinduced electron transfer. The generation of radicals is accompanied by single-crystal structural transformation and exhibits superior stability over six months in air. Impressively, the radicals throughout the cage skeleton can mimic the peroxidase of natural enzymes to decompose H2 O2 into OH· and facilitate oxidation reactions. Furthermore, an integrated catalyst by encapsulating Au clusters (glucose oxidase mimics) into the cage has been developed, in which the dual active sites (Au cluster and radical) are spatially isolated and can work as cascade nanozymes to prominently promote the enzyme-like tandem reaction via a substrate channeling effect.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2023 Tipo del documento: Article