Your browser doesn't support javascript.
loading
The Role of Heterogenous Real-world Data for Dengue Surveillance in Martinique: Observational Retrospective Study.
Sylvestre, Emmanuelle; Cécilia-Joseph, Elsa; Bouzillé, Guillaume; Najioullah, Fatiha; Etienne, Manuel; Malouines, Fabrice; Rosine, Jacques; Julié, Sandrine; Cabié, André; Cuggia, Marc.
Afiliación
  • Sylvestre E; Laboratoire de Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Université de Rennes, Centre Hospitalier Universitaire Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France.
  • Cécilia-Joseph E; Centre de Données Cliniques, Centre Hospitalier Universitaire Martinique, Fort-de-France, Martinique.
  • Bouzillé G; Centre de Données Cliniques, Centre Hospitalier Universitaire Martinique, Fort-de-France, Martinique.
  • Najioullah F; Laboratoire de Traitement du Signal et de l'Image (LTSI) - Unité Mixte de Recherche (UMR) 1099, Université de Rennes, Centre Hospitalier Universitaire Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France.
  • Etienne M; Laboratoire de Virologie, Centre Hospitalier Universitaire Martinique, Fort-de-France, Martinique.
  • Malouines F; Centre de Démoustication et de Recherche Entomologique, Collectivité Territoriale de la Martinique - Agence Régionale de Santé, Fort-de-France, Martinique.
  • Rosine J; Centre de Démoustication et de Recherche Entomologique, Collectivité Territoriale de la Martinique - Agence Régionale de Santé, Fort-de-France, Martinique.
  • Julié S; Cellule Martinique, Santé Publique France, Saint-Maurice, France.
  • Cabié A; Département d'Information Médicale, Service de Santé Publique, Centre Hospitalier Universitaire Martinique, Fort-de-France, Martinique.
  • Cuggia M; Infectious and Tropical Diseases Unit, Centre Hospitalier Universitaire Martinique, Fort-de-France, Martinique.
JMIR Public Health Surveill ; 8(12): e37122, 2022 12 22.
Article en En | MEDLINE | ID: mdl-36548023
BACKGROUND: Traditionally, dengue prevention and control rely on vector control programs and reporting of symptomatic cases to a central health agency. However, case reporting is often delayed, and the true burden of dengue disease is often underestimated. Moreover, some countries do not have routine control measures for vector control. Therefore, researchers are constantly assessing novel data sources to improve traditional surveillance systems. These studies are mostly carried out in big territories and rarely in smaller endemic regions, such as Martinique and the Lesser Antilles. OBJECTIVE: The aim of this study was to determine whether heterogeneous real-world data sources could help reduce reporting delays and improve dengue monitoring in Martinique island, a small endemic region. METHODS: Heterogenous data sources (hospitalization data, entomological data, and Google Trends) and dengue surveillance reports for the last 14 years (January 2007 to February 2021) were analyzed to identify associations with dengue outbreaks and their time lags. RESULTS: The dengue hospitalization rate was the variable most strongly correlated with the increase in dengue positivity rate by real-time reverse transcription polymerase chain reaction (Pearson correlation coefficient=0.70) with a time lag of -3 weeks. Weekly entomological interventions were also correlated with the increase in dengue positivity rate by real-time reverse transcription polymerase chain reaction (Pearson correlation coefficient=0.59) with a time lag of -2 weeks. The most correlated query from Google Trends was the "Dengue" topic restricted to the Martinique region (Pearson correlation coefficient=0.637) with a time lag of -3 weeks. CONCLUSIONS: Real-word data are valuable data sources for dengue surveillance in smaller territories. Many of these sources precede the increase in dengue cases by several weeks, and therefore can help to improve the ability of traditional surveillance systems to provide an early response in dengue outbreaks. All these sources should be better integrated to improve the early response to dengue outbreaks and vector-borne diseases in smaller endemic territories.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Brotes de Enfermedades Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans País/Región como asunto: Caribe / Martinica Idioma: En Revista: JMIR Public Health Surveill Año: 2022 Tipo del documento: Article País de afiliación: Francia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Brotes de Enfermedades Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Límite: Humans País/Región como asunto: Caribe / Martinica Idioma: En Revista: JMIR Public Health Surveill Año: 2022 Tipo del documento: Article País de afiliación: Francia