Your browser doesn't support javascript.
loading
Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds.
Osipova, Ekaterina; Barsacchi, Rico; Brown, Tom; Sadanandan, Keren; Gaede, Andrea H; Monte, Amanda; Jarrells, Julia; Moebius, Claudia; Pippel, Martin; Altshuler, Douglas L; Winkler, Sylke; Bickle, Marc; Baldwin, Maude W; Hiller, Michael.
Afiliación
  • Osipova E; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
  • Barsacchi R; Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.
  • Brown T; Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.
  • Sadanandan K; LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany.
  • Gaede AH; Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany.
  • Monte A; Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
  • Jarrells J; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
  • Moebius C; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.
  • Pippel M; Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.
  • Altshuler DL; DRESDEN concept Genome Center, Technische Universität Dresden, 01062 Dresden, Germany.
  • Winkler S; Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
  • Bickle M; University of British Columbia, Vancouver, Vancouver, BC V6T 1Z4, Canada.
  • Baldwin MW; Structure and Motion Laboratory, Royal Veterinary College, University of London, London, UK.
  • Hiller M; Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany.
Science ; 379(6628): 185-190, 2023 01 13.
Article en En | MEDLINE | ID: mdl-36634192
ABSTRACT
Hummingbirds possess distinct metabolic adaptations to fuel their energy-demanding hovering flight, but the underlying genomic changes are largely unknown. Here, we generated a chromosome-level genome assembly of the long-tailed hermit and screened for genes that have been specifically inactivated in the ancestral hummingbird lineage. We discovered that FBP2 (fructose-bisphosphatase 2), which encodes a gluconeogenic muscle enzyme, was lost during a time period when hovering flight evolved. We show that FBP2 knockdown in an avian muscle cell line up-regulates glycolysis and enhances mitochondrial respiration, coincident with an increased mitochondria number. Furthermore, genes involved in mitochondrial respiration and organization have up-regulated expression in hummingbird flight muscle. Together, these results suggest that FBP2 loss was likely a key step in the evolution of metabolic muscle adaptations required for true hovering flight.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Aves / Adaptación Fisiológica / Fructosa-Bifosfatasa / Músculo Esquelético / Vuelo Animal / Gluconeogénesis Límite: Animals Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Aves / Adaptación Fisiológica / Fructosa-Bifosfatasa / Músculo Esquelético / Vuelo Animal / Gluconeogénesis Límite: Animals Idioma: En Revista: Science Año: 2023 Tipo del documento: Article País de afiliación: Alemania