Your browser doesn't support javascript.
loading
Minimally Dissipative Information Erasure in a Quantum Dot via Thermodynamic Length.
Scandi, Matteo; Barker, David; Lehmann, Sebastian; Dick, Kimberly A; Maisi, Ville F; Perarnau-Llobet, Martí.
Afiliación
  • Scandi M; ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain.
  • Barker D; NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
  • Lehmann S; NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
  • Dick KA; NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
  • Maisi VF; Centre for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden.
  • Perarnau-Llobet M; NanoLund and Solid State Physics, Lund University, Box 118, 22100 Lund, Sweden.
Phys Rev Lett ; 129(27): 270601, 2022 Dec 30.
Article en En | MEDLINE | ID: mdl-36638287
ABSTRACT
In this Letter, we explore the use of thermodynamic length to improve the performance of experimental protocols. In particular, we implement Landauer erasure on a driven electron level in a semiconductor quantum dot, and compare the standard protocol in which the energy is increased linearly in time with the one coming from geometric optimization. The latter is obtained by choosing a suitable metric structure, whose geodesics correspond to optimal finite-time thermodynamic protocols in the slow driving regime. We show experimentally that geodesic drivings minimize dissipation for slow protocols, with a bigger improvement as one approaches perfect erasure. Moreover, the geometric approach also leads to smaller dissipation even when the time of the protocol becomes comparable with the equilibration timescale of the system, i.e., away from the slow driving regime. Our results also illustrate, in a single-electron device, a fundamental principle of thermodynamic geometry optimal finite-time thermodynamic protocols are those with constant dissipation rate along the process.

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Phys Rev Lett Año: 2022 Tipo del documento: Article País de afiliación: España