Your browser doesn't support javascript.
loading
Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite.
Deutsch, Eric W; Mendoza, Luis; Shteynberg, David D; Hoopmann, Michael R; Sun, Zhi; Eng, Jimmy K; Moritz, Robert L.
Afiliación
  • Deutsch EW; Institute for Systems Biology, Seattle, Washington 98109, United States.
  • Mendoza L; Institute for Systems Biology, Seattle, Washington 98109, United States.
  • Shteynberg DD; Institute for Systems Biology, Seattle, Washington 98109, United States.
  • Hoopmann MR; Institute for Systems Biology, Seattle, Washington 98109, United States.
  • Sun Z; Institute for Systems Biology, Seattle, Washington 98109, United States.
  • Eng JK; Proteomics Resource, University of Washington, Seattle, Washington 98195, United States.
  • Moritz RL; Institute for Systems Biology, Seattle, Washington 98109, United States.
J Proteome Res ; 22(2): 615-624, 2023 02 03.
Article en En | MEDLINE | ID: mdl-36648445
The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Programas Informáticos / Proteómica Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Programas Informáticos / Proteómica Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos