Your browser doesn't support javascript.
loading
FOUR LIPS plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis.
Li, Ping; Chen, Liang; Gu, Xiaoli; Zhao, Mingfeng; Wang, Wenjin; Hou, Suiwen.
Afiliación
  • Li P; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
  • Chen L; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
  • Gu X; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
  • Zhao M; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
  • Wang W; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
  • Hou S; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
Plant J ; 114(2): 424-436, 2023 04.
Article en En | MEDLINE | ID: mdl-36786686
Meristemoids, which are stomatal precursor cells, exhibit self-renewal and differentiation abilities. However, the only known core factor associated with meristemoid division termination and fate transition is the heterodimer formed by the basic helix-loop-helix proteins MUTE and SCREAMs (SCRMs). FOUR LIPS (FLP), a well-known transcription factor that restricts guard mother cell (GMC) division, is a direct target of MUTE. Whether FLP involves in meristemoid differentiation is unknown. Through sensitized genetic screening of flp-1, we identified a mute-like (mutl) mutant with arrested meristemoids. The mutant carried a novel allele of the MUTE locus, i.e., mute-4. Intriguingly, mute-4 is a hypomorphic allele that exhibits wild-type appearance with slightly delayed meristemoid-to-GMC transition, whereas it renders an unexpected mutl epidermis with most meristemoids arrested and very few stomata when combined with flp (flp mute-4), suggesting that FLP is a positive regulator during this transition process. Consistently, the expression of FLP increased during GMC commitment, and the number of cells at this stage was markedly increased in flp. flp scrm double mutants produced arrested meristemoids similar to mute, and FLP was able to interact physically with SCRM. Taken together, our results demonstrate that FLP functions together with MUTE and SCRMs to direct meristemoid-to-GMC fate transition.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arabidopsis / Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: Plant J Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2023 Tipo del documento: Article País de afiliación: China