Your browser doesn't support javascript.
loading
Comparison of SOX2 and POU5F1 Gene Expression in Leukapheresis-Derived CD34+ Cells before and during Cell Culture.
Swistowska, Malgorzata; Gil-Kulik, Paulina; Czop, Marcin; Wieczorek, Katarzyna; Macheta, Arkadiusz; Petniak, Alicja; Cioch, Maria; Hus, Marek; Szuta, Mariusz; Rahnama-Hezavah, Mansur; Plachno, Bartosz J; Kocki, Janusz.
Afiliación
  • Swistowska M; Department of Clinical Genetics, Medical University in Lublin, 20-080 Lublin, Poland.
  • Gil-Kulik P; Department of Clinical Genetics, Medical University in Lublin, 20-080 Lublin, Poland.
  • Czop M; Department of Clinical Genetics, Medical University in Lublin, 20-080 Lublin, Poland.
  • Wieczorek K; Chair and Department of Oral Surgery, Medical University in Lublin, 20-081 Lublin, Poland.
  • Macheta A; Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University in Lublin, 20-081 Lublin, Poland.
  • Petniak A; Department of Clinical Genetics, Medical University in Lublin, 20-080 Lublin, Poland.
  • Cioch M; Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University in Lublin, 20-081 Lublin, Poland.
  • Hus M; Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University in Lublin, 20-081 Lublin, Poland.
  • Szuta M; Chair of Oral Surgery, Jagiellonian University Medical College, 31-155 Cracow, Poland.
  • Rahnama-Hezavah M; Chair and Department of Oral Surgery, Medical University in Lublin, 20-081 Lublin, Poland.
  • Plachno BJ; Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Cracow, 30-387 Cracow, Poland.
  • Kocki J; Department of Clinical Genetics, Medical University in Lublin, 20-080 Lublin, Poland.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article en En | MEDLINE | ID: mdl-36835597
ABSTRACT
Bone marrow is an abundant source of both hematopoietic as well as non-hematopoietic stem cells. Embryonic, fetal and stem cells located in tissues (adipose tissue, skin, myocardium and dental pulp) express core transcription factors, including the SOX2, POU5F1 and NANOG gene responsible for regeneration, proliferation and differentiation into daughter cells. The aim of the study was to examine the expression of SOX2 and POU5F1 genes in CD34-positive peripheral blood stem cells (CD34+ PBSCs) and to analyze the influence of cell culture on the expression of SOX2 and POU5F1 genes. The study material consisted of bone marrow-derived stem cells isolated by using leukapheresis from 40 hematooncology patients. Cells obtained in this process were subject to cytometric analysis to determine the content of CD34+ cells. CD34-positive cell separation was conducted using MACS separation. Cell cultures were set, and RNA was isolated. Real-time PCR was conducted in order to evaluate the expression of SOX2 and POU5F1 genes and the obtained data were subject to statistical analysis. We identified the expression of SOX2 and POU5F1 genes in the examined cells and demonstrated a statistically significant (p < 0.05) change in their expression in cell cultures. Short-term cell cultures (<6 days) were associated with an increase in the expression of SOX2 and POU5F1 genes. Thus, short-term cultivation of transplanted stem cells could be used to induce pluripotency, leading to better therapeutic effects.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Leucaféresis / Factores de Transcripción SOXB1 Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2023 Tipo del documento: Article País de afiliación: Polonia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Leucaféresis / Factores de Transcripción SOXB1 Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Int J Mol Sci Año: 2023 Tipo del documento: Article País de afiliación: Polonia