Your browser doesn't support javascript.
loading
Effect of In Situ Mg-Sialon on the Oxidation Behavior of Low-Carbon MgO-C Refractories.
Dong, Bo; Yu, Chao; Xing, Guangchao; Di, Jinghui; Ding, Jun; Zhu, Qingyou; Zhu, Hongxi; Deng, Chengji.
Afiliación
  • Dong B; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Yu C; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Xing G; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Di J; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Ding J; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Zhu Q; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Zhu H; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
  • Deng C; The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China.
Materials (Basel) ; 16(5)2023 Feb 24.
Article en En | MEDLINE | ID: mdl-36903008
ABSTRACT
The in situ Mg-sialon in low-carbon MgO-C refractories was studied with respect to its oxidation behavior and mechanism at 1500 °C. The results indicated that the oxidation index and rate constant of low-carbon MgO-C refractories with Mg-sialon were 26.2% and 0.51 × 10-3 cm2/min at 1500 °C for 2 h, respectively. The formation of a dense MgO-Mg2SiO4-MgAl2O4 protective layer contributed to considerable oxidation resistance, and the generation of this thicker layer was due to the combined volume effect of Mg2SiO4 and MgAl2O4. The reduced porosity and more complex pore structure were also found in the refractories with Mg-sialon. Therefore, further oxidation was restricted as the oxygen diffusion path was effectively blocked. This work proves the potential application of Mg-sialon in improving the oxidation resistance of low-carbon MgO-C refractories.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2023 Tipo del documento: Article País de afiliación: China