Your browser doesn't support javascript.
loading
High-speed low-light in vivo two-photon voltage imaging of large neuronal populations.
Platisa, Jelena; Ye, Xin; Ahrens, Allison M; Liu, Chang; Chen, Ichun Anderson; Davison, Ian G; Tian, Lei; Pieribone, Vincent A; Chen, Jerry L.
Afiliación
  • Platisa J; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
  • Ye X; The John B. Pierce Laboratory, New Haven, CT, USA.
  • Ahrens AM; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
  • Liu C; Neurophotonics Center, Boston University, Boston, MA, USA.
  • Chen IA; Department of Biology, Boston University, Boston, MA, USA.
  • Davison IG; Department of Biomedical Engineering, Boston University, Boston, MA, USA.
  • Tian L; Neurophotonics Center, Boston University, Boston, MA, USA.
  • Pieribone VA; Neurophotonics Center, Boston University, Boston, MA, USA.
  • Chen JL; Department of Biology, Boston University, Boston, MA, USA.
Nat Methods ; 20(7): 1095-1103, 2023 07.
Article en En | MEDLINE | ID: mdl-36973547
Monitoring spiking activity across large neuronal populations at behaviorally relevant timescales is critical for understanding neural circuit function. Unlike calcium imaging, voltage imaging requires kilohertz sampling rates that reduce fluorescence detection to near shot-noise levels. High-photon flux excitation can overcome photon-limited shot noise, but photobleaching and photodamage restrict the number and duration of simultaneously imaged neurons. We investigated an alternative approach aimed at low two-photon flux, which is voltage imaging below the shot-noise limit. This framework involved developing positive-going voltage indicators with improved spike detection (SpikeyGi and SpikeyGi2); a two-photon microscope ('SMURF') for kilohertz frame rate imaging across a 0.4 mm × 0.4 mm field of view; and a self-supervised denoising algorithm (DeepVID) for inferring fluorescence from shot-noise-limited signals. Through these combined advances, we achieved simultaneous high-speed deep-tissue imaging of more than 100 densely labeled neurons over 1 hour in awake behaving mice. This demonstrates a scalable approach for voltage imaging across increasing neuronal populations.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Microscopía / Neuronas Límite: Animals Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Microscopía / Neuronas Límite: Animals Idioma: En Revista: Nat Methods Asunto de la revista: TECNICAS E PROCEDIMENTOS DE LABORATORIO Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos