Your browser doesn't support javascript.
loading
Evaluation of PVC-Type Insulation Foam Material for Cryogenic Applications.
Kim, Dae-Hee; Kim, Jeong-Hyeon; Kim, Hee-Tae; Kim, Jeong-Dae; Uluduz, Cengizhan; Kim, Minjung; Kim, Seul-Kee; Lee, Jae-Myung.
Afiliación
  • Kim DH; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea.
  • Kim JH; Hydrogen Ship Technology Center, Pusan National University, Busan 46241, Republic of Korea.
  • Kim HT; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea.
  • Kim JD; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea.
  • Uluduz C; Diab Korea, A505 SKY-Biz Tower, 97 Centum Jungang-Ro, Haeundae-gu, Busan 48058, Republic of Korea.
  • Kim M; Hydrogen Ship Technology Center, Pusan National University, Busan 46241, Republic of Korea.
  • Kim SK; Hydrogen Ship Technology Center, Pusan National University, Busan 46241, Republic of Korea.
  • Lee JM; Department of Naval Architecture and Ocean Engineering, Pusan National University, Busan 46241, Republic of Korea.
Polymers (Basel) ; 15(6)2023 Mar 11.
Article en En | MEDLINE | ID: mdl-36987184
ABSTRACT
With the International Maritime Organization (IMO) reinforcing environmental regulations on the shipbuilding industry, the demand for fuels, such as liquefied natural gas (LNG) and liquefied petroleum gas (LPG), has soared. Therefore, the demand for a Liquefied Gas Carrier for such LNG and LPG also increases. Recently, CCS carrier volume has been increasing, and damage to the lower CCS panel has occurred. To withstand liquefied gas loads, the CCSs should be fabricated using a material with improved mechanical strength and thermal performance compared with the conventional material. This study proposes a polyvinyl chloride (PVC)-type foam as an alternative to commercial polyurethane foam (PUF). The former material functions as both insulation and a support structure primarily for the LNG-carrier CCS. To investigate the effectiveness of the PVC-type foam for a low-temperature liquefied gas storage system, various cryogenic tests, namely tensile, compressive, impact, and thermal conductivity, are conducted. The results illustrate that the PVC-type foam proves stronger than PUF in mechanical performance (compressive, impact) across all temperatures. In the tensile test, there are reductions in strength with PVC-type foam but it meets CCS requirements. Therefore, it can serve as insulation and improve the overall CCS mechanical strength against increased loads under cryogenic temperatures. Additionally, PVC-type foam can serve as an alternative to other materials in various cryogenic applications.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2023 Tipo del documento: Article