Your browser doesn't support javascript.
loading
Single-cell multi-scale footprinting reveals the modular organization of DNA regulatory elements.
Hu, Yan; Ma, Sai; Kartha, Vinay K; Duarte, Fabiana M; Horlbeck, Max; Zhang, Ruochi; Shrestha, Rojesh; Labade, Ajay; Kletzien, Heidi; Meliki, Alia; Castillo, Andrew; Durand, Neva; Mattei, Eugenio; Anderson, Lauren J; Tay, Tristan; Earl, Andrew S; Shoresh, Noam; Epstein, Charles B; Wagers, Amy; Buenrostro, Jason D.
Afiliación
  • Hu Y; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Ma S; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Kartha VK; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Duarte FM; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Horlbeck M; Current address: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
  • Zhang R; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Shrestha R; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Labade A; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Kletzien H; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Meliki A; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Castillo A; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Durand N; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Mattei E; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Anderson LJ; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Tay T; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Earl AS; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
  • Shoresh N; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Epstein CB; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138 USA.
  • Wagers A; Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115.
  • Buenrostro JD; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA.
bioRxiv ; 2023 Mar 29.
Article en En | MEDLINE | ID: mdl-37034577
ABSTRACT
Cis-regulatory elements control gene expression and are dynamic in their structure, reflecting changes to the composition of diverse effector proteins over time1-3. Here we sought to connect the structural changes at cis-regulatory elements to alterations in cellular fate and function. To do this we developed PRINT, a computational method that uses deep learning to correct sequence bias in chromatin accessibility data and identifies multi-scale footprints of DNA-protein interactions. We find that multi-scale footprints enable more accurate inference of TF and nucleosome binding. Using PRINT with single-cell multi-omics, we discover wide-spread changes to the structure and function of candidate cis-regulatory elements (cCREs) across hematopoiesis, wherein nucleosomes slide, expose DNA for TF binding, and promote gene expression. Activity segmentation using the co-variance across cell states identifies "sub-cCREs" as modular cCRE subunits of regulatory DNA. We apply this single-cell and PRINT approach to characterize the age-associated alterations to cCREs within hematopoietic stem cells (HSCs). Remarkably, we find a spectrum of aging alterations among HSCs corresponding to a global gain of sub-cCRE activity while preserving cCRE accessibility. Collectively, we reveal the functional importance of cCRE structure across cell states, highlighting changes to gene regulation at single-cell and single-base-pair resolution.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: BioRxiv Año: 2023 Tipo del documento: Article