Your browser doesn't support javascript.
loading
Remote Spectral Light Sensing in the Home Environment: Further Development of the TWLITE Study Concept.
Reynolds, Christina L; Tan, Aylmer; Elliott, Jonathan E; Tinsley, Carolyn E; Wall, Rachel; Kaye, Jeffrey A; Silbert, Lisa C; Lim, Miranda M.
Afiliación
  • Reynolds CL; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
  • Tan A; School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
  • Elliott JE; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
  • Tinsley CE; VA Portland Health Care System, Research Service, Portland, OR 97239, USA.
  • Wall R; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
  • Kaye JA; VA Portland Health Care System, Research Service, Portland, OR 97239, USA.
  • Silbert LC; Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA.
  • Lim MM; VA Portland Health Care System, Research Service, Portland, OR 97239, USA.
Sensors (Basel) ; 23(8)2023 Apr 20.
Article en En | MEDLINE | ID: mdl-37112473
ABSTRACT
Aging is a significant contributor to changes in sleep patterns, which has compounding consequences on cognitive health. A modifiable factor contributing to poor sleep is inadequate and/or mistimed light exposure. However, methods to reliably and continuously collect light levels long-term in the home, a necessity for informing clinical guidance, are not well established. We explored the feasibility and acceptability of remote deployment and the fidelity of long-term data collection for both light levels and sleep within participants' homes. The original TWLITE study utilized a whole-home tunable lighting system, while the current project is an observational study of the light environment already existing in the home. This was a longitudinal, observational, prospective pilot study involving light sensors remotely deployed in the homes of healthy adults (n = 16, mean age 71.7 years, standard deviation 5.0 years) who were co-enrolled in the existing Collaborative Aging (in Place) Research Using Technology (CART) sub-study within the Oregon Center for Aging and Technology (ORCATECH). For 12 weeks, light levels were recorded via light sensors (ActiWatch Spectrum), nightly sleep metrics were recorded via mattress-based sensors, and daily activity was recorded via wrist-based actigraphy. Feasibility and acceptability outcomes indicated that participants found the equipment easy to use and unobtrusive. This proof-of-concept, feasibility/acceptability study provides evidence that light sensors can be remotely deployed to assess relationships between light exposure and sleep among older adults, paving the way for measurement of light levels in future studies examining lighting interventions to improve sleep.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Actividades Cotidianas / Vida Independiente Tipo de estudio: Guideline / Observational_studies Límite: Aged / Humans Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Actividades Cotidianas / Vida Independiente Tipo de estudio: Guideline / Observational_studies Límite: Aged / Humans Idioma: En Revista: Sensors (Basel) Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos