Your browser doesn't support javascript.
loading
Deciphering Phenotypes from Protein Biomarkers for Translational Research with PIPER.
Putty Reddy, Sudhir; Alontaga, Aileen Y; Welsh, Eric A; Haura, Eric B; Boyle, Theresa A; Eschrich, Steven A; Koomen, John M.
Afiliación
  • Putty Reddy S; Molecular Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States.
  • Alontaga AY; Pathology, Moffitt Cancer Center, Tampa, Florida 33612, United States.
  • Welsh EA; Bioinformatics and Biostatistics, Moffitt Cancer Center, Tampa, Florida 33612, United States.
  • Haura EB; Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States.
  • Boyle TA; Pathology, Moffitt Cancer Center, Tampa, Florida 33612, United States.
  • Eschrich SA; Bioinformatics and Biostatistics, Moffitt Cancer Center, Tampa, Florida 33612, United States.
  • Koomen JM; Molecular Oncology, Moffitt Cancer Center, Tampa, Florida 33612, United States.
J Proteome Res ; 22(6): 2055-2066, 2023 06 02.
Article en En | MEDLINE | ID: mdl-37171072
Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has widespread clinical use for detection of inborn errors of metabolism, therapeutic drug monitoring, and numerous other applications. This technique detects proteolytic peptides as surrogates for protein biomarker expression, mutation, and post-translational modification in individual clinical assays and in cancer research with highly multiplexed quantitation across biological pathways. LC-MRM for protein biomarkers must be translated from multiplexed research-grade panels to clinical use. LC-MRM panels provide the capability to quantify clinical biomarkers and emerging protein markers to establish the context of tumor phenotypes that provide highly relevant supporting information. An application to visualize and communicate targeted proteomics data will empower translational researchers to move protein biomarker panels from discovery to clinical use. Therefore, we have developed a web-based tool for targeted proteomics that provides pathway-level evaluations of key biological drivers (e.g., EGFR signaling), signature scores (representing phenotypes) (e.g., EMT), and the ability to quantify specific drug targets across a sample cohort. This tool represents a framework for integrating summary information, decision algorithms, and risk scores to support Physician-Interpretable Phenotypic Evaluation in R (PIPER) that can be reused or repurposed by other labs to communicate and interpret their own biomarker panels.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas / Investigación Biomédica Traslacional Tipo de estudio: Prognostic_studies Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas / Investigación Biomédica Traslacional Tipo de estudio: Prognostic_studies Idioma: En Revista: J Proteome Res Asunto de la revista: BIOQUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos