Your browser doesn't support javascript.
loading
Methionine Sources Differently Affect Production of Reactive Oxygen Species, Mitochondrial Bioenergetics, and Growth of Murine and Quail Myoblasts In Vitro.
Stange, Katja; Schumacher, Toni; Miersch, Claudia; Whelan, Rose; Klünemann, Martina; Röntgen, Monika.
Afiliación
  • Stange K; Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  • Schumacher T; Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  • Miersch C; Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
  • Whelan R; Nutritional Physiology and Dietetics, International University of Applied Sciences (IU), Juri-Gagarin-Ring 152, 99084 Erfurt, Germany.
  • Klünemann M; Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany.
  • Röntgen M; Evonik Operations GmbH, Rodenbacher Chaussee 4, 63457 Hanau, Germany.
Curr Issues Mol Biol ; 45(4): 2661-2680, 2023 Mar 23.
Article en En | MEDLINE | ID: mdl-37185698
ABSTRACT
An optimal supply of L-methionine (L-Met) improves muscle growth, whereas over-supplementation exerts adverse effects. To understand the underlying mechanisms, this study aims at exploring effects on the growth, viability, ROS production, and mitochondrial bioenergetics of C2C12 (mouse) and QM7 (quail) myoblasts additionally supplemented (100 or 1000 µM) with L-Met, DL-methionine (DL-Met), or DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). In both cell lines, all the supplements stimulated cell growth. However, in contrast to DL-Met, 1000 µM of L-Met (C2C12 cells only) or DL-HMTBA started to retard growth. This negative effect was stronger with DL-HMTBA and was accompanied by significantly elevated levels of extracellular H2O2, an indicator for OS, in both cell types. In addition, oversupplementation with DL-HMTBA (1000 µM) induced adaptive responses in mitochondrial bioenergetics, including reductions in basal (C2C12 and QM7) and ATP-synthase-linked (C2C12) oxygen consumption, maximal respiration rate, and reserve capacity (QM7). Only QM7 cells switched to nonmitochondrial aerobic glycolysis to reduce ROS production. In conclusion, we found a general negative effect of methionine oversupplementation on cell proliferation. However, only DL-HMTBA-induced growth retardation was associated with OS and adaptive, species-specific alterations in mitochondrial functionality. OS could be better compensated by quail cells, highlighting the role of species differences in the ability to cope with methionine oversupplementation.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Curr Issues Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Curr Issues Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article País de afiliación: Alemania