Your browser doesn't support javascript.
loading
Hydrogel Magnetomechanical Actuator Nanoparticles for Wireless Remote Control of Mechanosignaling In Vivo.
Jeong, Sumin; Shin, Wookjin; Park, Mansoo; Lee, Jung-Uk; Lim, Yongjun; Noh, Kunwoo; Lee, Jae-Hyun; Jun, Young-Wook; Kwak, Minsuk; Cheon, Jinwoo.
Afiliación
  • Jeong S; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
  • Shin W; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
  • Park M; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
  • Lee JU; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
  • Lim Y; Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
  • Noh K; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
  • Lee JH; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
  • Jun YW; Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
  • Kwak M; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea.
  • Cheon J; Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
Nano Lett ; 23(11): 5227-5235, 2023 06 14.
Article en En | MEDLINE | ID: mdl-37192537
As a new enabling nanotechnology tool for wireless, target-specific, and long-distance stimulation of mechanoreceptors in vivo, here we present a hydrogel magnetomechanical actuator (h-MMA) nanoparticle. To allow both deep-tissue penetration of input signals and efficient force generation, h-MMA integrates a two-step transduction mechanism that converts magnetic anisotropic energy to thermal energy within its magnetic core (i.e., Zn0.4Fe2.6O4 nanoparticle cluster) and then to mechanical energy to induce the surrounding polymer (i.e., pNiPMAm) shell contraction, finally delivering forces to activate targeted mechanoreceptors. We show that h-MMAs enable on-demand modulation of Notch signaling in both fluorescence reporter cell lines and a xenograft mouse model, demonstrating its utility as a powerful in vivo perturbation approach for mechanobiology interrogation in a minimally invasive and untethered manner.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Hidrogeles / Nanopartículas Límite: Animals / Humans Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Hidrogeles / Nanopartículas Límite: Animals / Humans Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article