Your browser doesn't support javascript.
loading
Generalized precursor prediction boosts identification rates and accuracy in mass spectrometry based proteomics.
Scott, Aaron M; Karlsson, Christofer; Mohanty, Tirthankar; Hartman, Erik; Vaara, Suvi T; Linder, Adam; Malmström, Johan; Malmström, Lars.
Afiliación
  • Scott AM; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden. aaron.scott@med.lu.se.
  • Karlsson C; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
  • Mohanty T; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
  • Hartman E; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
  • Vaara ST; Division of Anaesthesia and Intensive Care Medicine Department of Surgery, Intensive Care Units, Helsinki University Central Hospital, Box 340, 00029 HUS, Helsinki, Finland.
  • Linder A; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
  • Malmström J; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.
  • Malmström L; Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden. lars.malmstrom@med.lu.se.
Commun Biol ; 6(1): 628, 2023 06 10.
Article en En | MEDLINE | ID: mdl-37301900
Data independent acquisition mass spectrometry (DIA-MS) has recently emerged as an important method for the identification of blood-based biomarkers. However, the large search space required to identify novel biomarkers from the plasma proteome can introduce a high rate of false positives that compromise the accuracy of false discovery rates (FDR) using existing validation methods. We developed a generalized precursor scoring (GPS) method trained on 2.75 million precursors that can confidently control FDR while increasing the number of identified proteins in DIA-MS independent of the search space. We demonstrate how GPS can generalize to new data, increase protein identification rates, and increase the overall quantitative accuracy. Finally, we apply GPS to the identification of blood-based biomarkers and identify a panel of proteins that are highly accurate in discriminating between subphenotypes of septic acute kidney injury from undepleted plasma to showcase the utility of GPS in discovery DIA-MS proteomics.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteómica / Espectrometría de Masas en Tándem Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Commun Biol Año: 2023 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteómica / Espectrometría de Masas en Tándem Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Commun Biol Año: 2023 Tipo del documento: Article País de afiliación: Suecia