Your browser doesn't support javascript.
loading
LEGO-CSM: a tool for functional characterization of proteins.
Nguyen, Thanh Binh; de Sá, Alex G C; Rodrigues, Carlos H M; Pires, Douglas E V; Ascher, David B.
Afiliación
  • Nguyen TB; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD 4072, Australia.
  • de Sá AGC; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia.
  • Rodrigues CHM; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia.
  • Pires DEV; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane City, QLD 4072, Australia.
  • Ascher DB; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia.
Bioinformatics ; 39(7)2023 07 01.
Article en En | MEDLINE | ID: mdl-37382560
MOTIVATION: With the development of sequencing techniques, the discovery of new proteins significantly exceeds the human capacity and resources for experimentally characterizing protein functions. Localization, EC numbers, and GO terms with the structure-based Cutoff Scanning Matrix (LEGO-CSM) is a comprehensive web-based resource that fills this gap by leveraging the well-established and robust graph-based signatures to supervised learning models using both protein sequence and structure information to accurately model protein function in terms of Subcellular Localization, Enzyme Commission (EC) numbers, and Gene Ontology (GO) terms. RESULTS: We show our models perform as well as or better than alternative approaches, achieving area under the receiver operating characteristic curve of up to 0.93 for subcellular localization, up to 0.93 for EC, and up to 0.81 for GO terms on independent blind tests. AVAILABILITY AND IMPLEMENTATION: LEGO-CSM's web server is freely available at https://biosig.lab.uq.edu.au/lego_csm. In addition, all datasets used to train and test LEGO-CSM's models can be downloaded at https://biosig.lab.uq.edu.au/lego_csm/data.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Programas Informáticos / Proteínas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Programas Informáticos / Proteínas Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article País de afiliación: Australia