Fluorine Passivation Inhibits "Particle Talking" Behaviors under Thermal and Electrical Conditions of Pure Blue Mixed Halide Perovskite Nanocrystals.
Small
; 19(44): e2304829, 2023 Nov.
Article
en En
| MEDLINE
| ID: mdl-37403273
Owing to outstanding optoelectronic properties, lead halide perovskite nanocrystals (PNCs) are considered promising emitters for next-generation displays. However, the development of pure blue (460-470 nm) perovskite nanocrystal light-emitting diodes (PNC-LEDs), which correspond to the requirements of Rec. 2020 standard, lag far behind that of their green and red counterparts. Here, pure blue CsPb(Br/Cl)3 nanocrystals with remarkable optical performance are demonstrated by a facile fluorine passivation strategy. Prominently, the fluorine passivation on halide vacancies and strong bonding of Pb-F intensely enhance crystal structure stability and inhibit "particle talking" behaviors under both thermal and electrical conditions. Fluorine-based PNCs with high resistance of luminescence thermal quenching retain 70% of photoluminescent intensity when heated to 343 K, which can be attributed to the elevated activation energy for carrier trapping and unchanged grain size. Fluorine-based PNC-LEDs also exhibit stable pure blue electroluminescence (EL) emission with sevenfold promoted luminance and external quantum efficiencies (EQEs), where the suppression of ion migration is further evidenced by a lateral structure device with applied polarizing potential.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Small
Asunto de la revista:
ENGENHARIA BIOMEDICA
Año:
2023
Tipo del documento:
Article