Your browser doesn't support javascript.
loading
Mapping Polar Distortions using Nanobeam Electron Diffraction and a Cepstral Approach.
Holtz, Megan E; Padgett, Elliot; Johnston-Peck, Aaron C; Levin, Igor; Muller, David A; Herzing, Andrew A.
Afiliación
  • Holtz ME; Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
  • Padgett E; School of Applied and Engineering Physics, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA.
  • Johnston-Peck AC; Department of Metallurgical and Materials Engineering, Colorado School of Mines, 1301 19th Street, Golden, CO 80401, USA.
  • Levin I; School of Applied and Engineering Physics, Cornell University, 142 Sciences Drive, Ithaca, NY 14853, USA.
  • Muller DA; Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
  • Herzing AA; Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
Microsc Microanal ; 29(4): 1422-1435, 2023 Jul 25.
Article en En | MEDLINE | ID: mdl-37488825
Measuring local polar ordering is key to understanding ferroelectricity in thin films, especially for systems with small domains or significant disorder. Scanning nanobeam electron diffraction (NBED) provides an effective local probe of lattice parameters, local fields, polarization directions, and charge densities, which can be analyzed using a relatively low beam dose over large fields of view. However, quantitatively extracting the magnitudes and directions of polarization vectors from NBED remains challenging. Here, we use a cepstral approach, similar to a pair distribution function, to determine local polar displacements that drive ferroelectricity from NBED patterns. Because polar distortions generate asymmetry in the diffraction pattern intensity, we can efficiently recover the underlying displacements from the imaginary part of the cepstrum transform. We investigate the limits of this technique using analytical and simulated data and give experimental examples, achieving the order of 1.1 pm precision and mapping of polar displacements with nanometer resolution.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Microsc Microanal Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Microsc Microanal Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos