Your browser doesn't support javascript.
loading
The long-term effects of genomic selection: 2. Changes in allele frequencies of causal loci and new mutations.
Wientjes, Yvonne C J; Bijma, Piter; van den Heuvel, Joost; Zwaan, Bas J; Vitezica, Zulma G; Calus, Mario P L.
Afiliación
  • Wientjes YCJ; Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
  • Bijma P; Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
  • van den Heuvel J; Laboratory of Genetics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
  • Zwaan BJ; Laboratory of Genetics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
  • Vitezica ZG; UMR 1388 GenPhySE, INRAE, 31326 Castanet-Tolosan, France.
  • Calus MPL; Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands.
Genetics ; 225(1)2023 08 31.
Article en En | MEDLINE | ID: mdl-37506255
Genetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits. Here, we investigate the allele frequency changes of old and new causal loci under 50 generations of phenotypic, pedigree, and genomic selection, for a trait controlled by either additive, additive and dominance, or additive, dominance, and epistatic effects. Genomic selection resulted in slightly larger and faster changes in allele frequencies of causal loci than pedigree selection. For each locus, allele frequency change per generation was not only influenced by its statistical additive effect but also to a large extent by the linkage phase with other loci and its allele frequency. Selection fixed a large number of loci, and 5 times more unfavorable alleles became fixed with genomic and pedigree selection than with phenotypic selection. For pedigree selection, this was mainly a result of increased genetic drift, while genetic hitchhiking had a larger effect on genomic selection. When epistasis was present, the average allele frequency change was smaller (∼15% lower), and a lower number of loci became fixed for all selection methods. We conclude that for long-term genetic improvement using genomic selection, it is important to consider hitchhiking and to limit the loss of favorable alleles.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Selección Genética / Genoma Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Genetics Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Selección Genética / Genoma Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Genetics Año: 2023 Tipo del documento: Article País de afiliación: Países Bajos