Your browser doesn't support javascript.
loading
Robust phenotyping of highly multiplexed tissue imaging data using pixel-level clustering.
Liu, Candace C; Greenwald, Noah F; Kong, Alex; McCaffrey, Erin F; Leow, Ke Xuan; Mrdjen, Dunja; Cannon, Bryan J; Rumberger, Josef Lorenz; Varra, Sricharan Reddy; Angelo, Michael.
Afiliación
  • Liu CC; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Greenwald NF; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Kong A; Department of Pathology, Stanford University, Stanford, CA, USA.
  • McCaffrey EF; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Leow KX; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Mrdjen D; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Cannon BJ; Department of Pathology, Stanford University, Stanford, CA, USA.
  • Rumberger JL; Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany.
  • Varra SR; Charité University Medicine, Berlin, Germany.
  • Angelo M; Department of Pathology, Stanford University, Stanford, CA, USA.
Nat Commun ; 14(1): 4618, 2023 08 01.
Article en En | MEDLINE | ID: mdl-37528072
While technologies for multiplexed imaging have provided an unprecedented understanding of tissue composition in health and disease, interpreting this data remains a significant computational challenge. To understand the spatial organization of tissue and how it relates to disease processes, imaging studies typically focus on cell-level phenotypes. However, images can capture biologically important objects that are outside of cells, such as the extracellular matrix. Here, we describe a pipeline, Pixie, that achieves robust and quantitative annotation of pixel-level features using unsupervised clustering and show its application across a variety of biological contexts and multiplexed imaging platforms. Furthermore, current cell phenotyping strategies that rely on unsupervised clustering can be labor intensive and require large amounts of manual cluster adjustments. We demonstrate how pixel clusters that lie within cells can be used to improve cell annotations. We comprehensively evaluate pre-processing steps and parameter choices to optimize clustering performance and quantify the reproducibility of our method. Importantly, Pixie is open source and easily customizable through a user-friendly interface.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diagnóstico por Imagen Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Diagnóstico por Imagen Tipo de estudio: Diagnostic_studies Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos