Your browser doesn't support javascript.
loading
Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts.
Coradetti, Samuel T; Adamczyk, Paul A; Liu, Di; Gao, Yuqian; Otoupal, Peter B; Geiselman, Gina M; Webb-Robertson, Bobbie-Jo M; Burnet, Meagan C; Kim, Young-Mo; Burnum-Johnson, Kristin E; Magnuson, Jon; Gladden, John M.
Afiliación
  • Coradetti ST; DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
  • Adamczyk PA; Sandia National Laboratories, Livermore, CA, USA.
  • Liu D; Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA.
  • Gao Y; DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
  • Otoupal PB; Sandia National Laboratories, Livermore, CA, USA.
  • Geiselman GM; DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
  • Webb-Robertson BM; Sandia National Laboratories, Livermore, CA, USA.
  • Burnet MC; DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
  • Kim YM; Pacific Northwest National Laboratory, Richland, WA, USA.
  • Burnum-Johnson KE; DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
  • Magnuson J; Sandia National Laboratories, Livermore, CA, USA.
  • Gladden JM; DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Article en En | MEDLINE | ID: mdl-37537586
ABSTRACT
Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Xilosa / Proteómica Tipo de estudio: Prognostic_studies Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Xilosa / Proteómica Tipo de estudio: Prognostic_studies Idioma: En Revista: Microb Cell Fact Asunto de la revista: BIOTECNOLOGIA / MICROBIOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos