Your browser doesn't support javascript.
loading
Bio-oil and biochar production from Ageratum conyzoides using triple-stage hydrothermal liquefaction and utilization of biochar in removal of multiple heavy metals from water.
Verma, Monu; Lee, Ingyu; Pandey, Shivam; Nanda, Manisha; Kumar, Vinod; Chauhan, P K; Kumar, Sanjay; Vlaskin, Mikhail S; Kim, Hyunook.
Afiliación
  • Verma M; Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea; Algal Research and Bioenergy Lab, Department of Food Science & Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India.
  • Lee I; Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
  • Pandey S; Department of Biotechnology, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
  • Nanda M; Department of Microbiology, Graphic Era ( Deemed to be ) University, Dehradun, Uttarakhand 248002, India.
  • Kumar V; Algal Research and Bioenergy Lab, Department of Food Science & Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation; Graphic Era Hill University, Dehradun, Uttarakha
  • Chauhan PK; Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, HP, India.
  • Kumar S; Algal Research and Bioenergy Lab, Department of Food Science & Technology, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, 248002, India.
  • Vlaskin MS; Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russian Federation.
  • Kim H; Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea. Electronic address: h_kim@uos.ac.kr.
Chemosphere ; 340: 139858, 2023 Nov.
Article en En | MEDLINE | ID: mdl-37611756
Production of low-cost biomass and its utilization for producing cost effective and eco-friendly bioenergy as well as for removing heavy metals from water can be explored as an approach to meet the sustainable development goals. In light of the above-mentioned study, hydrothermal liquefaction (HTL) of Billy goat weed (BGW; Ageratum conyzoides) was carried out to produce bio-oil. In addition, the residual biochar from the HTL process was activated to obtain Act-BC and was further modified to produce MnO2-loaded biochar (Act-BC@MnO2-25%). The HTL of BGW was done at three different temperatures, i.e., 250 °C, 350 °C and 450 °C in a high-pressure batch reactor to maximize the bio-oil yield. Also, two different HTL methods i.e., single-stage HTL and triple-stage HTL of BGW were compared and discussed in detail. The bio-oil obtained via the triple-stage HTL was rich in carbon, hydrogen, and nitrogen. It also showed a higher heating value (HHV) and bio-oil yield (46%) than the single-stage. The residual biochar obtained at 450 °C (Act-BC) and MnO2 modified (Act-BC@MnO2-25%) were then tested to adsorb multiple heavy metal (i.e., Pb(II), Cd(II), Cu(II), and Ni(II)) from water. The kinetics data obtained from the adsorption experiment with Act-BC@MnO2-25% were well fitted to PSO kinetics model. The isotherm data were well aligned with the Langmuir model; the adsorption capacity of Act-BC@MnO2-25% was estimated to be 198.70 ± 11.40 mg g-1, 93.70 ± 6.60 mg g-1, 78.90 ± 7.20 mg g-1 and 30.50 ± 2.10 mg g-1 for Pb(II), Cd(II), Cu(II), and Ni(II), respectively. Furthermore, Act-BC@MnO2-25% remained active for metal ions absorption even after six consecutive uses. The result obtained from this study clearly demonstrates that the triple-stage HTL of BGW is a promising technology to achieve both remediation of metal-contaminated water and production of bioenergy.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Metales Pesados / Ageratum Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Metales Pesados / Ageratum Idioma: En Revista: Chemosphere Año: 2023 Tipo del documento: Article País de afiliación: India