Your browser doesn't support javascript.
loading
De Novo Mutation Rates in Sticklebacks.
Zhang, Chaowei; Reid, Kerry; Sands, Arthur F; Fraimout, Antoine; Schierup, Mikkel Heide; Merilä, Juha.
Afiliación
  • Zhang C; Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR.
  • Reid K; Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR.
  • Sands AF; Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR.
  • Fraimout A; Area of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR.
  • Schierup MH; Research Program in Organismal & Evolutionary Biology, Faculty Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
  • Merilä J; Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.
Mol Biol Evol ; 40(9)2023 09 01.
Article en En | MEDLINE | ID: mdl-37648662
ABSTRACT
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Smegmamorpha Límite: Animals Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Smegmamorpha Límite: Animals Idioma: En Revista: Mol Biol Evol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2023 Tipo del documento: Article