Your browser doesn't support javascript.
loading
CRISPR screens decode cancer cell pathways that trigger γδ T cell detection.
Mamedov, Murad R; Vedova, Shane; Freimer, Jacob W; Sahu, Avinash Das; Ramesh, Amrita; Arce, Maya M; Meringa, Angelo D; Ota, Mineto; Chen, Peixin Amy; Hanspers, Kristina; Nguyen, Vinh Q; Takeshima, Kirsten A; Rios, Anne C; Pritchard, Jonathan K; Kuball, Jürgen; Sebestyen, Zsolt; Adams, Erin J; Marson, Alexander.
Afiliación
  • Mamedov MR; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA. murad.mamedov@ucsf.edu.
  • Vedova S; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. murad.mamedov@ucsf.edu.
  • Freimer JW; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
  • Sahu AD; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
  • Ramesh A; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
  • Arce MM; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
  • Meringa AD; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Ota M; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Chen PA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
  • Hanspers K; UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.
  • Nguyen VQ; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
  • Takeshima KA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
  • Rios AC; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
  • Pritchard JK; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
  • Kuball J; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
  • Sebestyen Z; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
  • Adams EJ; Department of Genetics, Stanford University, Stanford, CA, USA.
  • Marson A; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
Nature ; 621(7977): 188-195, 2023 Sep.
Article en En | MEDLINE | ID: mdl-37648854
ABSTRACT
γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Linfocitos T / Receptores de Antígenos de Linfocitos T gamma-delta / Sistemas CRISPR-Cas / Edición Génica / Neoplasias Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Linfocitos T / Receptores de Antígenos de Linfocitos T gamma-delta / Sistemas CRISPR-Cas / Edición Génica / Neoplasias Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: Nature Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos