Your browser doesn't support javascript.
loading
Complete Characterization of Quantum Correlations by Randomized Measurements.
Wyderka, Nikolai; Ketterer, Andreas; Imai, Satoya; Bönsel, Jan Lennart; Jones, Daniel E; Kirby, Brian T; Yu, Xiao-Dong; Gühne, Otfried.
Afiliación
  • Wyderka N; Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
  • Ketterer A; Fraunhofer Institute for Applied Solid State Physics IAF, Tullastr. 72, 79108 Freiburg, Germany.
  • Imai S; Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany.
  • Bönsel JL; Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany.
  • Jones DE; DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA.
  • Kirby BT; DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA.
  • Yu XD; Tulane University, New Orleans, Louisiana 70118, USA.
  • Gühne O; Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany.
Phys Rev Lett ; 131(9): 090201, 2023 Sep 01.
Article en En | MEDLINE | ID: mdl-37721810
The fact that quantum mechanics predicts stronger correlations than classical physics is an essential cornerstone of quantum information processing. Indeed, these quantum correlations are a valuable resource for various tasks, such as quantum key distribution or quantum teleportation, but characterizing these correlations in an experimental setting is a formidable task, especially in scenarios where no shared reference frames are available. By definition, quantum correlations are reference-frame independent, i.e., invariant under local transformations; this physically motivated invariance implies, however, a dedicated mathematical structure and, therefore, constitutes a roadblock for an efficient analysis of these correlations in experiments. Here we provide a method to directly measure any locally invariant property of quantum states using locally randomized measurements, and we present a detailed toolbox to analyze these correlations for two quantum bits. We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation and their potential to display quantum nonlocality in its simplest form. Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits in the architecture.

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Clinical_trials Idioma: En Revista: Phys Rev Lett Año: 2023 Tipo del documento: Article País de afiliación: Alemania