F6P/G6P-mediated ChREBP activation promotes the insulin resistance-driven hepatic lipid deposition in zebrafish.
J Nutr Biochem
; 122: 109452, 2023 12.
Article
en En
| MEDLINE
| ID: mdl-37748621
Insulin-sensitive lipogenesis dominates the body lipid deposition; however, nonalcoholic fatty liver disease (NAFLD) develops in the insulin-resistant state. The regulation mechanism of insulin resistance-driven NAFLD remains elusive. Using zebrafish model of insulin resistance (ZIR, insrb-/-) and mouse hepatocytes (NCTC 1469), we explored the regulation mechanism of insulin resistance-driven hepatic lipid deposition under the stimulation of carbohydrate diet (CHD). In ZIR model, insulin resistance induced hyperlipidemia and elevated hepatic lipid deposition via elevating the gene/protein expressions of lipogenic enzymes, that was activated by carbohydrate response element binding protein (ChREBP), rather than sterol regulatory element binding proteins 1c (SREBP-1c). The metabolomic analysis in zebrafish and silencing of chrebp in mouse hepatocytes revealed that the increased hepatic frucotose-6-phosphate (F6P) and glucose-6-phosphate (G6P) promoted the ChREBP-mediated lipid deposition. We further identified that F6P alone was sufficient to activate ChREBP-mediated lipid deposition by a SREBP-1c-independent manner. Moreover, we clarified the suppressed hepatic phosphofructokinase/glucose-6-phosphatase functions and the normal glucokinase function preserved by glucose transporter 2 (GLUT2) manipulated the increased F6P/G6P content in ZIR. In conclusion, the present study revealed that insulin resistance promoted hepatic lipid deposition via the F6P/G6P-mediated ChREBP activation. Our findings deciphered the main regulation pathway for the liver lipid deposition in the insulin-resistant state and identified F6P as a new potential regulator for ChREBP.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Resistencia a la Insulina
/
Enfermedad del Hígado Graso no Alcohólico
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
J Nutr Biochem
Asunto de la revista:
BIOQUIMICA
/
CIENCIAS DA NUTRICAO
Año:
2023
Tipo del documento:
Article
País de afiliación:
China