Your browser doesn't support javascript.
loading
A Simple and Versatile Approach for the Low-Temperature Synthesis of Transition Metal Phosphide Nanoparticles from Metal Chloride Complexes and P(SiMe3 )3.
Sodreau, Alexandre; Zahedi, Hooman Ghazi; Dervisoglu, Riza; Kang, Liqun; Menten, Julia; Zenner, Johannes; Terefenko, Nicole; DeBeer, Serena; Wiegand, Thomas; Bordet, Alexis; Leitner, Walter.
Afiliación
  • Sodreau A; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
  • Zahedi HG; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
  • Dervisoglu R; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.
  • Kang L; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.
  • Menten J; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
  • Zenner J; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
  • Terefenko N; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
  • DeBeer S; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.
  • Wiegand T; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.
  • Bordet A; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
  • Leitner W; Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany.
Adv Mater ; 35(49): e2306621, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37768320
ABSTRACT
Metal chloride complexes react with tris(trimethylsilyl)phosphine under mild condition to produce metal phosphide (TMP) nanoparticles (NPs), and chlorotrimethylsilane as a byproduct. The formation of Si-Cl bonds that are stronger than the starting M-Cl bonds acts as a driving force for the reaction. The potential of this strategy is illustrated through the preparation of ruthenium phosphide NPs using [RuCl2 (cymene)] and tris(trimethylsilyl)phosphine at 35 °C. Characterization with a combination of techniques including electron microscopy (EM), X-ray absorption spectroscopy (XAS), and solid-state nuclear magnetic resonance (NMR) spectroscopy, evidences the formation of small (diameter of 1.3 nm) and amorphous NPs with an overall Ru50 P50 composition. Interestingly, these NPs can be easily immobilized on functional support materials, which is of great interest for potential applications in catalysis and electrocatalysis. Mo50 P50 and Co50 P50 NPs can also be synthesized following the same strategy. This approach is simple and versatile and paves the way toward the preparation of a wide range of transition metal phosphide nanoparticles under mild reaction conditions.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2023 Tipo del documento: Article País de afiliación: Alemania