Your browser doesn't support javascript.
loading
A Bayesian nonparametric approach to correct for underreporting in count data.
Arima, Serena; Polettini, Silvia; Pasculli, Giuseppe; Gesualdo, Loreto; Pesce, Francesco; Procaccini, Deni-Aldo.
Afiliación
  • Arima S; Department of Human and Social Sciences, University of Salento, Via di Valesio, 73100, LECCE, Italy.
  • Polettini S; Department of Social and Economic Sciences, Sapienza University, P.le Aldo Moro, 5, 00185 ROMA, Italy.
  • Pasculli G; Department of Computer, Control, and Management Engineering "Antonio Ruberti", Sapienza University, Via Ariosto, 25, 00185 Roma RM, Italy.
  • Gesualdo L; Section of Nephrology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11 - 70124 Bari, Italy.
  • Pesce F; Division of Renal Medicine, "Fatebenefratelli Isola Tiberina-Gemelli Isola", 00186 Rome, Italy.
  • Procaccini DA; Section of Nephrology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, Piazza Giulio Cesare, 11 - 70124 Bari, Italy.
Biostatistics ; 2023 Sep 16.
Article en En | MEDLINE | ID: mdl-37811675
We propose a nonparametric compound Poisson model for underreported count data that introduces a latent clustering structure for the reporting probabilities. The latter are estimated with the model's parameters based on experts' opinion and exploiting a proxy for the reporting process. The proposed model is used to estimate the prevalence of chronic kidney disease in Apulia, Italy, based on a unique statistical database covering information on m = 258 municipalities obtained by integrating multisource register information. Accurate prevalence estimates are needed for monitoring, surveillance, and management purposes; yet, counts are deemed to be considerably underreported, especially in some areas of Apulia, one of the most deprived and heterogeneous regions in Italy. Our results agree with previous findings and highlight interesting geographical patterns of the disease. We compare our model to existing approaches in the literature using simulated as well as real data on early neonatal mortality risk in Brazil, described in previous research: the proposed approach proves to be accurate and particularly suitable when partial information about data quality is available.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Biostatistics Año: 2023 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Biostatistics Año: 2023 Tipo del documento: Article País de afiliación: Italia