Your browser doesn't support javascript.
loading
Redundancy and the role of protein copy numbers in the cell polarization machinery of budding yeast.
Brauns, Fridtjof; Iñigo de la Cruz, Leila; Daalman, Werner K-G; de Bruin, Ilse; Halatek, Jacob; Laan, Liedewij; Frey, Erwin.
Afiliación
  • Brauns F; Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
  • Iñigo de la Cruz L; Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
  • Daalman WK; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
  • de Bruin I; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
  • Halatek J; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
  • Laan L; Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
  • Frey E; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands. l.laan@tudelft.nl.
Nat Commun ; 14(1): 6504, 2023 10 16.
Article en En | MEDLINE | ID: mdl-37845215
ABSTRACT
How can a self-organized cellular function evolve, adapt to perturbations, and acquire new sub-functions? To make progress in answering these basic questions of evolutionary cell biology, we analyze, as a concrete example, the cell polarity machinery of Saccharomyces cerevisiae. This cellular module exhibits an intriguing resilience it remains operational under genetic perturbations and recovers quickly and reproducibly from the deletion of one of its key components. Using a combination of modeling, conceptual theory, and experiments, we propose that multiple, redundant self-organization mechanisms coexist within the protein network underlying cell polarization and are responsible for the module's resilience and adaptability. Based on our mechanistic understanding of polarity establishment, we hypothesize that scaffold proteins, by introducing new connections in the existing network, can increase the redundancy of mechanisms and thus increase the evolvability of other network components. Moreover, our work gives a perspective on how a complex, redundant cellular module might have evolved from a more rudimental ancestral form.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas de Saccharomyces cerevisiae / Saccharomycetales Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Proteínas de Saccharomyces cerevisiae / Saccharomycetales Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Alemania