Your browser doesn't support javascript.
loading
Nebulized inhalation of LPAE-HDAC10 inhibits acetylation-mediated ROS/NF-κB pathway for silicosis treatment.
Tian, Yunze; Shi, Hongyang; Zhang, Danjie; Wang, Chenfei; Zhao, Feng; Li, Liang; Xu, Zhengshui; Jiang, Jiantao; Li, Jianzhong.
Afiliación
  • Tian Y; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Shi H; Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Zhang D; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Wang C; Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China.
  • Zhao F; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Li L; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Xu Z; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Jiang J; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
  • Li J; Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China. Electronic address: jianzhong-0520@163.com.
J Control Release ; 364: 618-631, 2023 Dec.
Article en En | MEDLINE | ID: mdl-37848136
ABSTRACT
Silicosis is a serious silica-induced respiratory disease for which there is currently no effective treatment. Irreversible pulmonary fibrosis caused by persistent inflammation is the main feature of silicosis. As an underlying mechanism, acetylation regulated by histone deacetylases (HDACs) are believed to be closely associated with persistent inflammation and pulmonary fibrosis. However, details of the mechanisms associated with the regulation of acetylated modification in silicosis have yet to be sufficiently established. Furthermore, studies on the efficient delivery of DNA to lung tissues by nebulized inhalation for the treatment of silicosis are limited. In this study, we established a mouse model of silicosis successfully. Differentially expressed genes (DEGs) between the lung tissues of silicosis and control mice were identified based on transcriptomic analysis, and HDAC10 was the only DEG among the HDACs. Acetylomic and combined acetylomic/proteomic analysis were performed and found that the differentially expressed acetylated proteins have diverse biological functions, among which 12 proteins were identified as the main targets of HDAC10. Subsequently, HDAC10 expression levels were confirmed to increase following nebulized inhalation of linear poly(ß-amino ester) (LPAE)-HDAC10 nanocomplexes. The levels of oxidative stress, the phosphorylation of IKKß, IκBα and p65, as well as inflammation were inhibited by HDAC10. Pulmonary fibrosis, and lung function in silicosis showed significant improvements in response to the upregulation of HDAC10. Similar results were obtained for the silica-treated macrophages in vitro. In conclusion, HDAC10 was identified as the main mediator of acetylation in silicosis. Nebulized inhalation of LPAE-HDAC10 nanocomplexes was confirmed to be a promising treatment option for silicosis. The ROS/NF-κB pathway was identified as an essential signaling pathway through which HDAC10 attenuates oxidative stress, inflammation, and pulmonary fibrosis in silicosis. This study provides a new theoretical basis for the treatment of silicosis.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fibrosis Pulmonar / Silicosis / Histona Desacetilasas Límite: Animals Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Fibrosis Pulmonar / Silicosis / Histona Desacetilasas Límite: Animals Idioma: En Revista: J Control Release Asunto de la revista: FARMACOLOGIA Año: 2023 Tipo del documento: Article País de afiliación: China