PARIS undergoes liquid-liquid phase separation and poly(ADP-ribose)-mediated solidification.
EMBO Rep
; 24(11): e56166, 2023 11 06.
Article
en En
| MEDLINE
| ID: mdl-37870275
ZNF746 was identified as parkin-interacting substrate (PARIS). Investigating its pathophysiological properties, we find that PARIS undergoes liquid-liquid phase separation (LLPS) and amorphous solid formation. The N-terminal low complexity domain 1 (LCD1) of PARIS is required for LLPS, whereas the C-terminal prion-like domain (PrLD) drives the transition from liquid to solid phase. In addition, we observe that poly(ADP-ribose) (PAR) strongly binds to the C-terminus of PARIS near the PrLD, accelerating its LLPS and solidification. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PAR formation leads to PARIS oligomerization in human iPSC-derived dopaminergic neurons that is prevented by the PARP inhibitor, ABT-888. Furthermore, SDS-resistant PARIS species are observed in the substantia nigra (SN) of aged mice overexpressing wild-type PARIS, but not with a PAR binding-deficient PARIS mutant. PARIS solidification is also found in the SN of mice injected with preformed fibrils of α-synuclein (α-syn PFF) and adult mice with a conditional knockout (KO) of parkin, but not if α-syn PFF is injected into mice deficient for PARP1. Herein, we demonstrate that PARIS undergoes LLPS and PAR-mediated solidification in models of Parkinson's disease.
Palabras clave
Texto completo:
1
Bases de datos:
MEDLINE
Asunto principal:
Enfermedad de Parkinson
/
Poli Adenosina Difosfato Ribosa
Límite:
Animals
/
Humans
Idioma:
En
Revista:
EMBO Rep
Asunto de la revista:
BIOLOGIA MOLECULAR
Año:
2023
Tipo del documento:
Article
País de afiliación:
Corea del Sur