Your browser doesn't support javascript.
loading
Uncovering hidden therapeutic indications through drug repurposing with graph neural networks and heterogeneous data.
Ayuso-Muñoz, Adrián; Prieto-Santamaría, Lucía; Ugarte-Carro, Esther; Serrano, Emilio; Rodríguez-González, Alejandro.
Afiliación
  • Ayuso-Muñoz A; ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain. Electronic address: adrian.ayuso.munoz@alumnos.upm.es.
  • Prieto-Santamaría L; ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain. Electronic address: lucia.prieto.santamaria@upm.es.
  • Ugarte-Carro E; ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain. Electronic address: e.ugarte@alumnos.upm.es.
  • Serrano E; ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain. Electronic address: emilio.serrano@upm.es.
  • Rodríguez-González A; ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain; Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain. Electronic address: alejandro.rg@upm.es.
Artif Intell Med ; 145: 102687, 2023 11.
Article en En | MEDLINE | ID: mdl-37925215
Drug repurposing has gained the attention of many in the recent years. The practice of repurposing existing drugs for new therapeutic uses helps to simplify the drug discovery process, which in turn reduces the costs and risks that are associated with de novo development. Representing biomedical data in the form of a graph is a simple and effective method to depict the underlying structure of the information. Using deep neural networks in combination with this data represents a promising approach to address drug repurposing. This paper presents BEHOR a more comprehensive version of the REDIRECTION model, which was previously presented. Both versions utilize the DISNET biomedical graph as the primary source of information, providing the model with extensive and intricate data to tackle the drug repurposing challenge. This new version's results for the reported metrics in the RepoDB test are 0.9604 for AUROC and 0.9518 for AUPRC. Additionally, a discussion is provided regarding some of the novel predictions to demonstrate the reliability of the model. The authors believe that BEHOR holds promise for generating drug repurposing hypotheses and could greatly benefit the field.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Reposicionamiento de Medicamentos Idioma: En Revista: Artif Intell Med Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Redes Neurales de la Computación / Reposicionamiento de Medicamentos Idioma: En Revista: Artif Intell Med Asunto de la revista: INFORMATICA MEDICA Año: 2023 Tipo del documento: Article