Your browser doesn't support javascript.
loading
Temporally multiplexed imaging of dynamic signaling networks in living cells.
Qian, Yong; Celiker, Orhan T; Wang, Zeguan; Guner-Ataman, Burcu; Boyden, Edward S.
Afiliación
  • Qian Y; McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA.
  • Celiker OT; McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 01239, USA.
  • Wang Z; McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA.
  • Guner-Ataman B; McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA.
  • Boyden ES; McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 01239, USA; Department of Media Arts and Sciences, MIT, Cambridge, MA 01239, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 01239, USA; Department of Biological Engineering, MIT, Ca
Cell ; 186(25): 5656-5672.e21, 2023 12 07.
Article en En | MEDLINE | ID: mdl-38029746
Molecular signals interact in networks to mediate biological processes. To analyze these networks, it would be useful to image many signals at once, in the same living cell, using standard microscopes and genetically encoded fluorescent reporters. Here, we report temporally multiplexed imaging (TMI), which uses genetically encoded fluorescent proteins with different clocklike properties-such as reversibly photoswitchable fluorescent proteins with different switching kinetics-to represent different cellular signals. We linearly decompose a brief (few-second-long) trace of the fluorescence fluctuations, at each point in a cell, into a weighted sum of the traces exhibited by each fluorophore expressed in the cell. The weights then represent the signal amplitudes. We use TMI to analyze relationships between different kinase activities in individual cells, as well as between different cell-cycle signals, pointing toward broad utility throughout biology in the analysis of signal transduction cascades in living systems.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas Límite: Animals / Humans Idioma: En Revista: Cell Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas Límite: Animals / Humans Idioma: En Revista: Cell Año: 2023 Tipo del documento: Article País de afiliación: Estados Unidos