Your browser doesn't support javascript.
loading
Supramolecular Aggregation of Carbon Nanodots.
Song, Run-Wei; Shen, Cheng-Long; Zheng, Guang-Song; Ni, Qing-Chao; Liu, Kai-Kai; Zang, Jin-Hao; Dong, Lin; Lou, Qing; Shan, Chong-Xin.
Afiliación
  • Song RW; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Shen CL; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Zheng GS; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Ni QC; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Liu KK; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Zang JH; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Dong L; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Lou Q; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
  • Shan CX; Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Article en En | MEDLINE | ID: mdl-38060996
ABSTRACT
Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Nano Lett Año: 2023 Tipo del documento: Article País de afiliación: China