Your browser doesn't support javascript.
loading
GRP/GRPR signaling pathway aggravates hyperuricemia-induced renal inflammation and fibrosis via ABCG2-dependent mechanisms.
Sun, Hao-Lu; Bian, He-Ge; Liu, Xue-Mei; Zhang, Heng; Ying, Jie; Yang, Hang; Zu, Tong; Cui, Guo-Qiang; Liao, Yan-Fei; Xu, Ma-Fei; Meng, Xiao-Ming; Jin, Juan.
Afiliación
  • Sun HL; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; College of Life Sciences, Anhui Medical University, Hefei 230032, China.
  • Bian HG; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Liu XM; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Zhang H; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Ying J; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Yang H; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Zu T; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Cui GQ; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Liao YF; School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
  • Xu MF; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; College of Life Sciences, Anhui Medical University, Hefei 230032, China. Electronic address: xumafei@ahmu.edu.cn.
  • Meng XM; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, Hefei 230032, China. Electronic address: mengxiaoming@ahmu.ed
  • Jin J; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China. Electronic address: jinjuan@ahmu.edu.cn.
Biochem Pharmacol ; 218: 115901, 2023 12.
Article en En | MEDLINE | ID: mdl-38084678
The gastrin-releasing peptide receptor (GRPR) binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. In this study, we investigated the therapeutic effect of a novel gastrin-releasing peptide receptor antagonist RH-1402 in hyperuricemia-induced kidney fibrosis and its underlying mechanisms. We conducted enzyme linked immunosorbent assay (ELISA) and immunohistochemical analyses and found that proGRP and GRPR expression levels were significantly increased in patients with hyperuricemic nephropathy (HN) and HN mice. GRPR knockdown significantly attenuated inflammatory and fibrotic responses in adenosine-treated human proximal tubule epithelial cells. GRPR knockout or GRPR conditional knockout in renal tubular epithelial cells significantly alleviated the decline in renal function and fibrosis in HN mice in vivo. RNA-seq and String database analysis revealed that GRP/GRPR promoted HN by suppressing the ABCG2/PDZK1 and increasing TGF-ß/Smad3 levels by activating the NF-κB pathway. Overexpression of GRPR increased TGF-ß/Smad3 levels, where as it reduced ABCG2/PDZK1 levels in adenosine-treated HK2 cells, which was reversed by the NF-κB inhibitor. Furthermore, we evaluated the therapeutic effects of the novel GRPR inhibitor RH-1402 on hyperuricaemia-induced renal injury and evaluated the inflammatory and fibrosis responses in vivo and in vitro. Pre-treatment with RH-1402 attenuated hyperuricaemia-induced renal injury, restored renal function, and suppressed renal inflammation and fibrosis. Taken together, GRPR enhances hyperuricaemia-induced tubular injury, inflammation, and renal fibrosis via ABCG2-dependent mechanisms and may serve as a promising therapeutic target for HN treatment.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Hiperuricemia / Enfermedades Renales / Nefritis Límite: Animals / Humans Idioma: En Revista: Biochem Pharmacol Año: 2023 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Hiperuricemia / Enfermedades Renales / Nefritis Límite: Animals / Humans Idioma: En Revista: Biochem Pharmacol Año: 2023 Tipo del documento: Article País de afiliación: China