Your browser doesn't support javascript.
loading
Microbial interactions shape cheese flavour formation.
Melkonian, Chrats; Zorrilla, Francisco; Kjærbølling, Inge; Blasche, Sonja; Machado, Daniel; Junge, Mette; Sørensen, Kim Ib; Andersen, Lene Tranberg; Patil, Kiran R; Zeidan, Ahmad A.
Afiliación
  • Melkonian C; Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, 2970, Hørsholm, Denmark. chrats.melkonian@gmail.com.
  • Zorrilla F; Theoretical Biology and Bioinformatics, Science for Life, Utrecht University, Utrecht, the Netherlands. chrats.melkonian@gmail.com.
  • Kjærbølling I; Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands. chrats.melkonian@gmail.com.
  • Blasche S; Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
  • Machado D; Bioinformatics & Modeling, R&D Digital Innovation, Chr. Hansen A/S, 2970, Hørsholm, Denmark.
  • Junge M; Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
  • Sørensen KI; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
  • Andersen LT; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
  • Patil KR; Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
  • Zeidan AA; Strain Improvement, R&D Food Microbiology, Chr. Hansen A/S, 2970, Hørsholm, Denmark.
Nat Commun ; 14(1): 8348, 2023 Dec 21.
Article en En | MEDLINE | ID: mdl-38129392
ABSTRACT
Cheese fermentation and flavour formation are the result of complex biochemical reactions driven by the activity of multiple microorganisms. Here, we studied the roles of microbial interactions in flavour formation in a year-long Cheddar cheese making process, using a commercial starter culture containing Streptococcus thermophilus and Lactococcus strains. By using an experimental strategy whereby certain strains were left out from the starter culture, we show that S. thermophilus has a crucial role in boosting Lactococcus growth and shaping flavour compound profile. Controlled milk fermentations with systematic exclusion of single Lactococcus strains, combined with genomics, genome-scale metabolic modelling, and metatranscriptomics, indicated that S. thermophilus proteolytic activity relieves nitrogen limitation for Lactococcus and boosts de novo nucleotide biosynthesis. While S. thermophilus had large contribution to the flavour profile, Lactococcus cremoris also played a role by limiting diacetyl and acetoin formation, which otherwise results in an off-flavour when in excess. This off-flavour control could be attributed to the metabolic re-routing of citrate by L. cremoris from diacetyl and acetoin towards α-ketoglutarate. Further, closely related Lactococcus lactis strains exhibited different interaction patterns with S. thermophilus, highlighting the significance of strain specificity in cheese making. Our results highlight the crucial roles of competitive and cooperative microbial interactions in shaping cheese flavour profile.
Asunto(s)

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Queso / Lactococcus lactis Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Dinamarca

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Queso / Lactococcus lactis Límite: Animals Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2023 Tipo del documento: Article País de afiliación: Dinamarca