Your browser doesn't support javascript.
loading
Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein.
Bevacqua, Romina J; Zhao, Weichen; Merheb, Emilio; Kim, Seung Hyun; Marson, Alexander; Gloyn, Anna L; Kim, Seung K.
Afiliación
  • Bevacqua RJ; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Zhao W; Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Merheb E; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Kim SH; Diabetes, Obesity and Metabolism Institute (DOMI), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
  • Marson A; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Gloyn AL; Gladstone-UCSF Institute of Genomic Immunology and Northern California JDRF Center of Excellence, University of California at San Francisco, San Francisco, CA 94158, USA.
  • Kim SK; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
iScience ; 27(1): 108693, 2024 Jan 19.
Article en En | MEDLINE | ID: mdl-38205242
ABSTRACT
Successful genome editing in primary human islets could reveal features of the genetic regulatory landscape underlying ß cell function and diabetes risk. Here, we describe a CRISPR-based strategy to interrogate functions of predicted regulatory DNA elements using electroporation of a complex of Cas9 ribonucleoprotein (Cas9 RNP) and guide RNAs into primary human islet cells. We successfully targeted coding regions including the PDX1 exon 1, and non-coding DNA linked to diabetes susceptibility. CRISPR-Cas9 RNP approaches revealed genetic targets of regulation by DNA elements containing candidate diabetes risk SNPs, including an in vivo enhancer of the MPHOSPH9 gene. CRISPR-Cas9 RNP multiplexed targeting of two cis-regulatory elements linked to diabetes risk in PCSK1, which encodes an endoprotease crucial for Insulin processing, also demonstrated efficient simultaneous editing of PCSK1 regulatory elements, resulting in impaired ß cell PCSK1 regulation and Insulin secretion. Multiplex CRISPR-Cas9 RNP provides powerful approaches to investigate and elucidate human islet cell gene regulation in health and diabetes.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IScience Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Bases de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IScience Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos