A Diffusive Artificial Synapse Based on Charged Metal Nanoparticles.
Nano Lett
; 24(6): 1951-1958, 2024 Feb 14.
Article
en En
| MEDLINE
| ID: mdl-38315061
ABSTRACT
We show that a diffusive memristor with analogue switching characteristics can be achieved in a layer of gold nanoparticles (AuNPs) functionalized with charged self-assembled monolayers (deprotonated 11-mercaptoundecanoic acid). The nanoparticle core and the anchored stationary charges are jammed within the layer while the mobile counterions [N(CH3)4+] can respond to the electric field and spontaneously diffuse back to the initial positions upon removal of the field. This metal nanoparticle device is set-step free, energy consumption efficient, mechanically flexible, and analogous to bio-Ca2+ dynamics and has tunable conductance modulation capabilities at the counterion concentrations. The gradual resistive switching behavior enables us to implement several important synaptic functions such as potentiation/depression, spike voltage-dependent plasticity, spike duration-dependent plasticity, spike frequency-dependent plasticity, and paired-pulse facilitation. Finally, on the basis of the paired-pulse facilitation characteristics, the metal nanoparticle diffusive artificial synapse is used for edge extraction with exhibits excellent performance.
Texto completo:
1
Bases de datos:
MEDLINE
Idioma:
En
Revista:
Nano Lett
Año:
2024
Tipo del documento:
Article
País de afiliación:
China