Your browser doesn't support javascript.
loading
Isolation and Functional Characterization of a Constitutive Promoter in Upland Cotton (Gossypium hirsutum L.).
Yang, Yang; Li, Xiaorong; Li, Chenyu; Zhang, Hui; Tuerxun, Zumuremu; Hui, Fengjiao; Li, Juan; Liu, Zhigang; Chen, Guo; Cai, Darun; Chen, Xunji; Li, Bo.
Afiliación
  • Yang Y; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Li X; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Li C; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Zhang H; College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.
  • Tuerxun Z; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Hui F; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Li J; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
  • Liu Z; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Chen G; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Cai D; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Chen X; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
  • Li B; Xinjiang Key Laboratory of Crop Biotechnology, The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article en En | MEDLINE | ID: mdl-38339199
ABSTRACT
Multiple cis-acting elements are present in promoter sequences that play critical regulatory roles in gene transcription and expression. In this study, we isolated the cotton FDH (Fiddlehead) gene promoter (pGhFDH) using a real-time reverse transcription-PCR (qRT-PCR) expression analysis and performed a cis-acting elements prediction analysis. The plant expression vector pGhFDHGUS was constructed using the Gateway approach and was used for the genetic transformation of Arabidopsis and upland cotton plants to obtain transgenic lines. Histochemical staining and a ß-glucuronidase (GUS) activity assay showed that the GUS protein was detected in the roots, stems, leaves, inflorescences, and pods of transgenic Arabidopsis thaliana lines. Notably, high GUS activity was observed in different tissues. In the transgenic lines, high GUS activity was detected in different tissues such as leaves, stalks, buds, petals, androecium, endosperm, and fibers, where the pGhFDH-driven GUS expression levels were 3-10-fold higher compared to those under the CaMV 35S promoter at 10-30 days post-anthesis (DPA) during fiber development. The results indicate that pGhFDH can be used as an endogenous constitutive promoter to drive the expression of target genes in various cotton tissues to facilitate functional genomic studies and accelerate cotton molecular breeding.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arabidopsis / Gossypium Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Arabidopsis / Gossypium Idioma: En Revista: Int J Mol Sci Año: 2024 Tipo del documento: Article País de afiliación: China