Your browser doesn't support javascript.
loading
Tuning attention based long-short term memory neural networks for Parkinson's disease detection using modified metaheuristics.
Cuk, Aleksa; Bezdan, Timea; Jovanovic, Luka; Antonijevic, Milos; Stankovic, Milos; Simic, Vladimir; Zivkovic, Miodrag; Bacanin, Nebojsa.
Afiliación
  • Cuk A; Singidunum University, Danijelova 32, Belgrade, 11010, Serbia.
  • Bezdan T; Singidunum University, Danijelova 32, Belgrade, 11010, Serbia.
  • Jovanovic L; Singidunum University, Danijelova 32, Belgrade, 11010, Serbia.
  • Antonijevic M; Singidunum University, Danijelova 32, Belgrade, 11010, Serbia.
  • Stankovic M; Singidunum University, Danijelova 32, Belgrade, 11010, Serbia.
  • Simic V; Faculty of Transport and Traffic Engineering, University of Belgrade, Vojvode Stepe 305, Belgrade, 11010, Serbia.
  • Zivkovic M; College of Engineering, Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan City, 320315, Taiwan.
  • Bacanin N; College of Informatics, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea.
Sci Rep ; 14(1): 4309, 2024 02 21.
Article en En | MEDLINE | ID: mdl-38383690
ABSTRACT
Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Enfermedad de Parkinson Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Enfermedad de Parkinson Límite: Humans Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article