Your browser doesn't support javascript.
loading
The clinical applicability of sensor technology with body position detection to combat pressure ulcers in bedridden patients.
van Helden, Tim M N; van Neck, Johan W; Versnel, Sarah L; Mureau, Marc A M; van Dishoeck, Anne-Margreet.
Afiliación
  • van Helden TMN; Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands. Electronic address: t.vanhelden@erasmusmc.nl.
  • van Neck JW; Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
  • Versnel SL; Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
  • Mureau MAM; Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
  • van Dishoeck AM; Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
Med Eng Phys ; 124: 104096, 2024 Feb.
Article en En | MEDLINE | ID: mdl-38418025
ABSTRACT

INTRODUCTION:

Pressure Ulcers (PUs) are a major healthcare issue leading to prolonged hospital stays and decreased quality of life. Monitoring body position changes using sensors could reduce workload, improve turn compliance and decrease PU incidence.

METHOD:

This systematic review assessed the clinical applicability of different sensor types capable of in-bed body position detection.

RESULTS:

We included 39 articles. Inertial sensors were most commonly used (n = 14). This sensor type has high accuracy and is equipped with a 2-4 hour turn-interval warning system increasing turn compliance. The second-largest group were piezoresistive (pressure) sensors (n = 12), followed by load sensors (n = 4), piezoelectric sensors (n = 3), radio wave-based sensors (n = 3) and capacitive sensors (n = 3). All sensor types except inertial sensors showed a large variety in the type and number of detected body positions. However, clinically relevant position changes such as trunk rotation and head of bed elevation were not detected or tested.

CONCLUSION:

Inertial sensors are the benchmark sensor type regarding accuracy and clinical applicability but these sensors have direct patient contact and (re)applying the sensors requires the effort of a nurse. Other sensor types without these disadvantages should be further investigated and developed. We propose the Pressure Ulcer Position System (PUPS) guideline to facilitate this.
Asunto(s)
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Úlcera por Presión Límite: Humans Idioma: En Revista: Med Eng Phys Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article

Texto completo: 1 Bases de datos: MEDLINE Asunto principal: Úlcera por Presión Límite: Humans Idioma: En Revista: Med Eng Phys Asunto de la revista: BIOFISICA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article