Your browser doesn't support javascript.
loading
Techniques for recovery and recycling of ionic liquids: A review.
Khoo, Ying Siew; Tjong, Tommy Chandra; Chew, Jia Wei; Hu, Xiao.
Afiliación
  • Khoo YS; School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, 639798, Singapore; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore.
  • Tjong TC; School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, 639798, Singapore; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore.
  • Chew JW; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), 62 Nanyang Drive, 637459, Singapore; Chemical Engineering, Chalmers University of Technology, 4
  • Hu X; School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, 639798, Singapore; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore. Electronic address: asxhu@ntu.edu.sg.
Sci Total Environ ; 922: 171238, 2024 Apr 20.
Article en En | MEDLINE | ID: mdl-38423336
ABSTRACT
Due to beneficial properties like non-flammability, thermal stability, low melting point and low vapor pressure, ionic liquids (ILs) have gained great interest from engineers and researchers in the past decades to replace conventional solvents. The superior characteristics of ILs make them promising for applications in fields as wide-ranging as pharmaceuticals, foods, nanoparticles synthesis, catalysis, electrochemistry and so on. To alleviate the high cost and environmental impact of ILs, various technologies have been reported to recover and purify the used ILs, as well as recycling the ILs. The aim of this article is to overview the state-of-the-art research on the recovery and recycling technologies for ILs including membrane technology, distillation, extraction, aqueous two-phase system (ATPS) and adsorption. In addition, challenges and future perspectives on ILs recovery are discussed. This review is expected to provide valuable insights for developing effective and environmentally friendly recovery methods for ILs.
Palabras clave

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: Singapur

Texto completo: 1 Bases de datos: MEDLINE Idioma: En Revista: Sci Total Environ Año: 2024 Tipo del documento: Article País de afiliación: Singapur